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Abstract 

 

In this paper a new approach representing a generalization of Fay-Herriot (1979) (FH) to unit-level nonlinear 

mixed models is presented which, like FH, employs data aggregation but through design-weighted estimating 

functions rather than estimators.  Working with estimating functions (EFs) helps to alleviate the problems 

associated with FH because EFs, in general, can be better approximated by normality even for modest sample 

sizes, and can always be collapsed, if necessary, to improve the Gaussian approximation and the precision of 

variance estimates.  Also, EFs can be based on unit-level covariate information, and can be specified at the 

lowest level of aggregation to avoid the problem of internal inconsistency.  For hierarchical Bayes (HB) small 

area estimation, the proposed approach simply replaces the likelihood (typically computed under the 

assumption of ignorable design) with the estimating function based Gaussian likelihood which does not 

require ignorability of the design. The method is illustrated by means of a simple example of fitting a HB 

linear mixed model to data obtained from a nonignorable sample design.  Both fixed and random parameters 

are estimated to construct small area estimates.  Different scenarios for nonignorability are considered.  

MCMC is used for HB parameter estimation. 
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1.  INTRODUCTION 

 

This research on small area estimation (SAE) was motivated by the problem of fitting generalized linear 

mixed models to survey data when unit-level covariate information is available.  The problem arose in the 

context of the 1999 National Household Survey on Drug Abuse (NHSDA), see Folsom, Shah, and Vaish 

(1999).  In the NHSDA, one of the outcome variables (y) of interest is past month marijuana use by persons 

aged 12-17.  For this dichotomous variable, one can use as covariates person-level demographic variables, 
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census block-group-level demographic variables, census tract-level demographic and socioeconomic status 

variables, and inter-censal county-level variables including drug-related arrest, treatment and death rates.  For 

estimating propensity of marijuana use at the state-level (treated as a small area), the following hierarchical 

Bayes (HB) model similar to the one considered by Folsom et al. may be formulated: 
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where yijk denotes the observation on the kth individual from the jth cluster (such as a county) in the ith stratum 

(such as a state), xijk is the corresponding individual-level covariate vector, and g(⋅) is the link function (such 

as the logit).  The p -dimensional fixed parameter β has an improper uniform distribution on the p -

dimensional space of real vectors, and the variance components 2
ησ , 2

vσ  have nearly flat inverse Gamma 

priors with very small location and scale parameters 
0

2
0 0, 0ην σ> > ,

0

2
1 0, 0vν σ> > .  The model errors ε’s 

are independent of each other, and also independent of the random effects η’s  and v ’s. 

 

In the context of survey data, the model (1.1) is a super-population model assumed to hold for the finite 

population UN of size N.  For UN, let M be the number of strata ( 1, ,i M= K ), and iN  be the number of 

clusters in the ith stratum (j=1, …, iN ), and ijN be the number of individuals in the (i,j)th cluster (k=1, …, 

ijN ).  The parameters η1, …, ηM are the realized values from ( )20,N ησ .  The (random) parameters of interest 

are the stratum means, µi, and the domain means, µd where the domain d may cut across strata.  Thus,  

 ( ) , ,i ijk ijk i d id idj k i
N Nµ µ µ γ µ= =∑ ∑ ∑  (1.2)

                                                                                      

where γid is the proportion of domain-d units in stratum-i, and µid is the mean of the domain-d units in stratum-

i. Other parameters of interest may be the overall mean ( )i, where i i iji j
N Nµ γ µ γ= =∑ ∑ , and the fixed 

parameters α, β, 2
ησ  and 2

vσ . 

 

The observed data is a sample ( s ) of size n  from the finite population UN.  If the sample design, ( )p s , is 
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ignorable for the model (1.1), i.e., the model (1.1) also holds for the sample, s , then the usual HB estimation 

theory can be applied to s .  However, if the design is nonignorable, use of the standard likelihood in the HB 

framework would lead to a biased posterior distribution, because the model (1.1) cannot be assumed to hold 

for the sampled data due to selection bias.  This is discussed further in   Section 2. 

 

In Section 3, we consider existing solutions based on the seminal work of Fay-Herriot’s (1979) aggregate- 

level model, and show how it takes account of the survey design. However, it does have some limitations 

which are also discussed.  Section 4 provides motivation for the alternative proposed solution which is 

described in Section 5 in the context of a simple example of mixed linear models.  The MCMC steps for the 

proposed HB-SAE method are described in section 6. Sections 7 and 8 describe the simulation experiment 

and results. The case of mixed nonlinear models is considered in Section 9 which also shows how the 

proposed method compares with the alternative method of Folsom et al. originally proposed for the NHSDA 

application. Finally we conclude the paper with some remarks in Section 10. 

 

2.  NONIGNORABILITY OF SAMPLE DESIGN 

 

Consider a super-population model which is assumed to hold for the finite population UN.  For the sake of 

simplicity, we first consider a simple linear mixed model for the observations yij on the unit j in the ith cluster, 

( 1, ,i M= K ; j=1, …, iN  ).  We have 

 ij ij i ijy x β η ε′= + +  (2.1)     

                                                                                                                

where ( ) ( )2 2~ 0, , ~ 0,ij iid i iidN Nε ηε σ η σ , β is a p -vector of fixed effects, and xij is a p -vector of covariates 

associated with the unit j in the cluster i.  Here ηi’s are random cluster effects. 

 

We note that in practice it is almost impossible to include in the model all the factor effects (main and 

interaction) of design covariates such as cluster characteristics that are deemed to be related to the outcome 

variable y.  This happens for several reasons:  (i) the need for a parsimonious model, (ii) the need to avoid 

instability of parameter estimates, (iii) the model should correspond to the analyst’s goals, and (iv) some 

covariates at lower levels are excluded due to unavailability of lower level population totals; these totals are 

needed in defining finite population parameters. 

 

Since sample selection probabilities may depend on the outcome variables through design covariates, and 



 50

since all the factor effects due to design covariates may not be controlled in the model, it is difficult to assume 

that the design can be ignored for the model under consideration.  This is why many survey samplers prefer to 

follow the conventional wisdom of playing it safe by taking the design into account.  There are two main 

scenarios in small area modeling which make the design nonignorable. 

 

Scenario I.  Here small areas are, in fact, design strata, and the random effects iη ’s correspond to these strata. 

 Sampling within each stratum is informative in that the sample inclusion probability πij depends on εij.  Note 

that the factors corresponding to design covariates ( 2x , say), which are omitted from the model but are 

correlated with yij, become naturally part of εij.  This is easily seen from the following expression for the 

reduced model ( )1|y E y x ε ′= + , ( ) ( )( )1 2 1| , |E y x x E y xε ε′ = − +  when the enlarged model is 

( )1 2| ,y E y x x ε= + . 

 

Scenario II.  Here, small areas are like domains, and the random effects iη ’s correspond to these domains.  

Note that each domain may cut across design strata.  In each stratum, sampling may be informative in that the 

sample inclusion probability of the (i,j)th unit in the hth stratum, πh(ij) may depend on ηi or εij or both.  This is 

again for the reason that effects of design covariates which are not part of the model covariates x’s, become 

automatically part of the residual, ηi + εij; here the residual has two components, ηi and εij. 

 

Now, in Bayes or hierarchical Bayes estimation, we need specifications of the likelihood, ( )2| , ,L y εβ η σ  and 

of prior distributions.  If L(⋅) is misspecified, the posterior distribution, [ ]yθ , is not correct for parameters of 

interest θ .  (For instance, i xi iAθ β η′= + , is (approximately) the ith area mean where 0ij ij
Nε ≈∑  for large 

Ni, and Axi is the mean of x for the ith area, i.e., xi xi iA T N= , xi ijj
T x=∑ .)  Thus, any characteristic of [ ]yθ , 

in particular the posterior mean, could be (seriously) biased in that 

 ( )| * | 0yE E yθ θ θ− ≠⎡ ⎤⎣ ⎦       (2.2)                          

 where E* denotes the posterior expectation based on the misspecified likelihood. 

 

In the next section, we consider the existing solution of Fay and Herriot (1979, henceforth referred to as FH) 

in which the sampling design is taken into account by working with the aggregate-level data.  Note that for 

aggregate statistics such as weighted sample totals or means, design-based variances and covariances can be 

estimated, and their distribution can be approximated as Gaussian.  It is difficult in general to specify the 
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distribution of the unit-level data because there is not enough information about the distribution of the N-

vector of sample inclusion indicators.  In fact, typically, not even all the first order inclusion probabilities are 

known, let alone second or higher order inclusion probabilities. Some alternative approaches based on 

modeling of selection probabilities have been proposed by Pfeffermann and Sverchkov (1999). However, with 

the desirable goal of making minimum modeling assumptions for SAE, a way out might be to do efficient 

aggregation of data that incorporates unit-level information, and then use sampling weights as in FH, see 

Section 4.  It may be remarked that unlike the census data which is based on nature’s selection mechanism of 

the finite population, the sample from the finite population is based on man’s selection mechanism, and hence 

the sampler knows very well what should not be assumed away.  This is probably why the analysis of survey 

data becomes quite challenging, and thus distinguishes itself from the mainstream of statistics. 

 

3.  EXISTING SOLUTION:  AGGREGATE LEVEL MODEL OF FH 

 

The work of FH represents a milestone in the history of the development of SAE as it is the first method that 

takes design into account in small area modeling.  The basic idea is to transform the unit-level data (y) to 

aggregate-level data ( )y%  by using the direct small area estimates, ( ), 1
ˆ in
i dir ij ij ij

y w wθ +=
=∑  where wijs are the 

(calibrated) design weights, and ( )1
in

i ijj
w w+ =

=∑  is typically equal to Ni due to weight calibration.  Thus, in 

FH, the data is first condensed into M estimates which are modeled as follows.  We will consider only 

Scenario I for the sake of simplicity.  For 1, ,i M= K ; we specify the following 

 ,
ˆObservation model:  ,

Link model:             ,
i dir i i

i xi i

e and

A

θ θ

θ β η

= +

′= +
                                                 (3.1) 

where ( ) ( )2~ 0, ( ) , ~ 0,i iide N diag V N ηη σ& . 

Here, V  denotes the vector of design-based variance estimates that are regarded as known.  In practice, they 

could be smoothed by suitable modeling; FH used generalized variance functions to smooth V , while Otto 

and Bell (1995) proposed a parameterization of Cov (e) along with a suitable  prior under a Bayesian 

framework.  Even if variance estimates are not smoothed, one could still treat them as known and meet the 

goal of SAE modeling. The reason for this is that the main goal of SAE modeling is to see whether variances 

of SAEs after borrowing strength from other areas via modeling can be reduced appreciably in comparison to 

the variances of direct estimates. Note that under the assumption of unit- level model (2.1), there is another 

error term involving εij in the link model (3.1) given by 
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 1
,iN

i xi i ij ij

xi i

A N

A

θ β η ε

β η
=

′= + +

′≈ +

∑                                                        (3.2) 

where the term 0ij ij
Nε ≈∑  by SLLN, because Ni is expected to be very large in practice even though ni 

may be small.  Similarly, the Cov(e) in the observation model involves 2
εσ  when the covariance is computed 

under both design and model randomizations, i.e., when the super-population expectation of the design-based 

covariance is taken.  However, it is better to use just the design-based estimate of Cov(e) for several reasons:  

firstly, the actual computational form for Cov(e) under complex designs may be quite complex involving 

unknown second order inclusion probabilities, and so computation of its expectation may be prohibitive; 

secondly, even if the expectation involving 2
εσ  is computable, one cannot produce good estimates of  both 

2 2 and ε ησ σ   from the aggregate-level data because it is hard to discriminate between them without unit-level 

data; and thirdly, the design-based estimate of Cov(e) has the desirable property of robustness to departures 

from the link model. 

 

The Gaussian approximation of ,î dir iθ θ−  in the FH set-up is based on the Central Limit Theorem, and using 

this, FH proposed empirical Bayes estimators for θis.  However, if we were interested in HB estimation using 

the aggregate-level data, the unit-level likelihood L(y|⋅) can be replaced by the aggregate-level likelihood 

( )L y| ⋅% , and one can then proceed as in Datta and Ghosh (1991). 

 

Although the FH method represents a very important development in SAE methodology for survey data, it 

does suffer from a few limitations resulting mainly from aggregate-level modeling.  Note that when the unit-

level model is of interest, there is a loss of efficiency by using an aggregate-level model.  This is analogous to 

the case of using the grouped data mle instead of the raw data mle in chi-square goodness-of-fit tests.  While 

it is true that some loss of efficiency is inevitable when trying to take design into account, the issue under 

consideration is how to reduce this efficiency loss for unit-level models.  Below we list some limitations of 

the FH approach. 

 

(a) In the aggregate-level modeling approach of FH, unit-level covariate information is not exploited.  The 

more unit-level information is used, the more efficient the resulting estimators are expected to be. 
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(b) The FH model is specific to the level of aggregation used.  If we change the level of aggregation, we get a 

different model which is not internally consistent with the original model.  Note that the exchangeability 

assumption about iη ’s is specific to the level of aggregation.  This inconsistency problem becomes more 

acute when dealing with nonlinear models either in the mean function of the link model or in the dependent 

variable of the observation model.  For example, with the logit link function, mean at a higher level is not sum 

of the means at lower levels that make up the higher level of aggregation.  In practice, the additive property is 

clearly desirable.  We run into similar problems if îθ  is transformed through a nonlinear function such as 

ˆlog iθ .  Here, an additional problem arises in the definition of ˆlog iθ  when ˆ 0iθ = , see e.g. the report on SAIPE 

models by US Bureau of the Census (1998). 

 

(c) In FH, the Gaussian approximation of î iθ θ−  may not be reasonable for small to modest ni’s.  This may be 

more of a concern when dealing with discrete outcome variables. 

 

(d) Finally, smoothed variance estimates V may not be a good approximation for very small in ’s.  Note that, 

if the direct small area estimates ,î dirθ  are unstable (this is precisely the reason why we are modeling to 

borrow strength), then the variance estimates V  will, of course, be unstable. 

 

4.  MOTIVATION FOR THE ALTERNATIVE SOLUTION 

 

In this paper we propose a generalization of FH to unit-level nonlinear mixed models such that unit-level 

covariate information is efficiently used as well as some form of data aggregation is used to account for the 

sample design.  Recently, in an innovative attempt to account for the design, Prasad and Rao (1999) derived 

an aggregate-(or area-) level model for direct estimates from the unit-level model using survey weights, and 

obtained pseudo-optimal  SAEs.  It is pseudo in that the design was assumed to be ignorable, and so only the 

effect of  unequal selection probabilities (i.e., sampling weights) was accounted for in the joint design-model 

variance. Moreover, for estimating variance components, in addition to assuming that the design was 

ignorable, the unequal weighting effect was also not accounted for.  You and Rao (2003) used a similar 

framework for developing pseudo HB estimates.  The above methods, however, are applicable to only linear 

models because the aggregate-level model for direct estimates is derived from the unit-level model.  On the 

other hand, the method of Folsom et al. (1999) deals with unit-level mixed nonlinear models and develops a 

HB method using pseudo-likelihood involving survey weights and the corresponding survey weighted 
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estimating functions. However, the method assumes ignorability of the design, and the pseudo likelihood used 

for HB need not be a valid likelihood; see Section 7 for a brief discussion.  

 

Our goal is to attempt to take full account of the survey design in unit-level modeling, and to develop methods 

that apply to both linear and nonlinear models.  To this end, unlike FH we resort to data aggregation via 

survey-weighted estimating functions rather than through estimators.  Use of survey weighted estimating 

functions has been implicitly invoked by survey statisticians for a long time in ratio and regression type 

estimators, see e.g., Fuller (1975), Cassel, S@rndal, and Wretman (1976).  The pioneering work of Binder 

(1983) explicitly introduced a general theoretical framework of survey weighted EFs for deriving estimators 

of super-population parameters, and their asymptotic properties under a given sample design.  The optimality 

of survey-weighted EFs under joint design-model randomization was, however, established by Godambe and 

Thompson (1986) using the optimality framework of Godambe (1960).  As an example, for the simple mixed 

linear model (2.1), the optimal EFs for β and ηi’s have heuristically appealing forms and are given by 

 
( )
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( ) 1
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i ij ij i ijj

M n
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= =

′= − −

′= − −

∑
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                                                (4.1) 

where wij’s are inverse of the first order selection probabilities πij’s. 

 

We propose to use the above set of EFs as the starting point for Bayes or HB estimation, i.e., the likelihood 

would be defined by the distribution of these EFs.  Clearly, EFs use unit-level information and they use it 

efficiently in view of their optimality properties.  It is also known that EFs can be better approximated as 

Gaussian even for modest sample sizes (McCullagh, 1991) because by their very nature, they are simple sums 

of elementary zero functions, although the elementary functions could be complex by themseleves. Moreover, 

EFs can be easily collapsed to improve the Gaussian approximation as well as the precision of variance 

estimates.  Notice that the serious problem of internal inconsistency can be avoided by defining the EFs at the 

lowest level of aggregation.  Thus, parameters at higher levels of aggregation can be obtained from the lowest 

level parameter estimates which serve as building blocks.  It should also be noted that, typically in practice, 

the joint inclusion probabilities (πi(jk)) of units j and k in stratum i are not available and therefore, survey 

weighted EFs can’t be constructed if they involve cross-product terms, e.g., if they involve double sums 

within a stratum i.  It is, therefore, desirable to specify the model (2.1) so that the error term iε ’s are i.i.d. 

which, in turn, gives rise to single sums within strata for survey weighting. 
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Now, the vector ϕ of EFs ( which involves data and parameters) serves as the condensed input data which 

after collapsing, if necessary, gives rise to an approximate Gaussian likelihood, L( *y |β, η, ⋅) where *y  

denotes the implicit condensing of information in y via φ .  Thus, for the unit-level HB analysis, the original 

likelihood L(y|⋅) (which would have been based on the ignorable design assumption) is replaced by the 

estimating function based Gaussian likelihood (EFGL), L( *y |⋅) which does not assume ignorability of the 

design. 

 

5.  PROPOSED METHOD (EFGL) 

 

We shall describe the proposed method of estimating function-based Gaussian likelihood (EFGL) in terms of 

the model (2.1).  Suppose, the HB-framework at the census-level is defined as follows: 
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        (5.1)                           

Here an attempt is made to specify the priors to make them as noninformative as possible, and thus making 

the HB framework as objective as possible.  Thus, the p-vector β of regression coefficients is assumed to have 

an improper uniform prior on the p-dimensional Euclidean space.  However, this does not affect the 

propreitory of the posterior of β .  For variance component 2
ησ , choice of the inverse Gamma as prior is 

computationally convenient because of its conjugate nature, and we can choose the shape parameter ( )0 2ν  

and the scale parameter ( )0

2 2ησ  as very small positive numbers to make it nearly noninformative.  The prior 

for 2
εσ , however, is improper like that of the mean parameter β, because in EFGL, as will be seen later, we 

introduce a separate EF, 2 ( )σ εϕ , for 2
εσ  which treats 2

εσ  as a mean parameter.  It turns out as expected and as 

in the case of  FH that 2
εσ  is not functionally part of the V-C matrix  φΣ  of ϕ when a suitable design-based 

estimate of ϕΣ  is substituted.  So we need to add an extra EF if the estimation of 2
εσ  is also of interest.  It 

may be noted that there is quite a bit of flexibility in the EF framework in that all the pieces of information 

deemed important can be incorporated by augmenting  the vector ϕ. 

 

Now, the EFGL method will be defined for Scenario I in which small areas are strata.  The EFs ( )iηϕ  and βϕ  

were defined earlier by (4.1).  Further suppose, 
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 ( ) ( ) ( )( ) ( ) ( ) ( )~ 0, , ~ 0,  and , .i approx i approx i iN V N V Cov Cη η β β β η βηϕ ϕ ϕ ϕ =  (5.2) 

Next define 

 ( ) ( ) ( ),i i i i i ia a Cβ β η βη ηϕ ϕ ϕ νΣ= − =%  

 

which implies that βϕ%  is uncorrelated with ( )iηϕ ’s.  It should be remarked that if the model (2.1) has an 

intercept β0, then 0 ( )iiβ ηϕ ϕ=∑  implying that 0 0βϕ =% .  We, therefore, drop one element from βϕ  

corresponding to β0.  However, we shall continue to use βϕ  to denote the reduced vector of dimension 1p − .  

Further, since  

   
 

                                  ( ) ( )1
(1) ( ), , .. .MCov V V C V C V diag V Vβ β β βη η βη η η ηϕ %% − ′≡ = − =                               (5.3)  

We have 

 ( ) ( ) ( )1, ~ 0, ,  blockdiag ,approx M pN V V V Vη β ϕ ϕ η βϕ ϕ ϕ % % %% % + −
′= =  (5.4) 

and the EFG log-likelihood is given by 

 ( )
2 2
(1) ( ) 1

(1) ( )

1* | ,  const ... .
2

M

M
y Vη η

β β β
η η

ϕ ϕ
β η ϕ ϕ

ν ν
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′⎜ ⎟= − + + +
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                    (5.5) 

 

In the above EFGL, the covariance matrix Vϕ%  is design-based. This matrix may, in general, depend on 

unknown parameters which can be evaluated at their current values in the MCMC samples.  It may be noted 

that there is, in fact, a second component involving 2
εσ  when the V-C matrix of ϕ%  is computed under joint 

design-model randomization.  However, it is negligible in comparison to the first term, Vϕ% , under the usual 

assumption of ni<<Ni.  It should also be emphasized that, in practice, some collapsing of ( )iηϕ ’s may often be 

required because the corresponding ni’s (which are random under Scenario II) may be small.  We may need 

this collapsing to improve the Gaussian approximation, as well as  to improve the precision of  the estimate 

Vϕ% .  The effect of EF-collapsing on ηi-estimates is that all the prior estimates of iθ ’s ( )i xi iAθ β η′= +  that are 

part of a given collapsed EF, are shrunk toward the direct estimate of the corresponding collapsed small area.  

It is, therefore, important to  choose EF-collapsing partners carefully so that they have similar ηi’s both in 

magnitude and sign.  To this end, one can make a decision based on substantive considerations.  However, in 

practice, as a yardstick one can use (0)
,ˆi HBη  obtained under the ignorability assumption.  Once it is decided 
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which ηi’s would be used in EF-collapsing, one can construct a new census EF under the assumption of 

common ηi’s for this set, and then employ survey weighting to get the appropriate collapsed EF. 

 

If estimation of 2
εσ  is also of interest, we add an extra EF as mentioned earlier.  It is again motivated by 

census EF, and is given by 

 ( )( ) ( )2 2

2 2
( ) ( )~ 0, .ij ij i ij approxi j

y x w N Vεσ ε σ εϕ β η σ′= − − −∑ ∑  (5.6) 

Note that in FH, although 2
εσ  is not made explicitly part of the model, it could be done so by taking 

expectation of the design-based variance V.  However, as mentioned earlier, using aggregate-level data ,î dirθ , 

it would be difficult to discriminate very well between the two variance components 2
ησ  and 2

εσ . 

 

With the specification of EFGL, estimation of parameters ( )2 2, , ,η εη β σ σ  can proceed in the HB setup using 

MCMC steps.  The next section gives details of full conditional posterior distributions needed for MCMC.  

Although so far, we have considered only Scenario I, the case of Scenario II is somewhat analogous.  The 

main difference is that the V-C matrix of ϕη is no longer diagonal, and so the form of the EFGL is not as 

simple.  However, full conditional posterior distributions (Section 6), can be derived easily by first 

orthogonalizing ϕβ with respect to ϕη, and then for each i, orthogonalizing ( )iηϕ  with all other ( )iηϕ ′ , i i′ ≠ . 

 

6.  MCMC FOR THE PROPOSED HB-SAE 

 

For the Scenario I, the MCMC steps for finding full conditionals can be defined as follows.  It is assumed that 

the regularity conditions for the convergence of the MCMC steps toward a stationary distribution  hold. 

 

Step I.  [ ]| *,yβ η  

 

We note that under the vague uniform prior for β, the posterior of β is simply proportional to the likelihood, 

and is given by 

[ ] 2 1
( ) ( )1

1log | .
2

M
i ii

const Vη η β β ββ ϕ ν ϕ ϕ−
=

⎡ ⎤′⋅ = − +⎢ ⎥⎣ ⎦∑ %% %    (6.1) 

Since the kernel of the log-likelihood involves first and second powers of β, one can complete after some 

algebra the quadratic form in β.  This implies that [β|⋅] is exact Gaussian with mean and V-C matrix given 
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respectively by the mode and curvature (at mode of the above kernel function if it depends on β ).  Thus, 

[ ] 1
1 mode ( )

ˆ| *, , ,py N ψ ββ η β Σ−
− ⎡ ⎤= ⎣ ⎦    (6.2) 

where modeβ̂  solves the estimating equation 0βψ = , 

( ) ( ) ( ) ( ) 1
( ) ( )1

log * , .
M

i i w ii
L y x V X WX Vβ η η β βψ β β η ϕ ϕ−

+=
′= ∂ ∂ = +∑ % % % %  (6.3) 

where i i wi
X WX X WX a x +′ ′ ′≡ −∑% % , i w ij iji

x x w+ =∑ , and 'ij ij ijX WX x x w′ = ∑∑ . It is seen that similar to 

generalized least squares, mod
ˆ

eβ   can be obtained in a closed form.  The V-C of βψ  is easily obtained as 

1
( ) ( )1

( ) ( )
M

i w i w ii
E x x V X WX V X WXβ

ψ β η β
ψ

βΣ −
+ +=

∂⎡ ⎤ ′ ′ ′= − = +⎢ ⎥∂⎣ ⎦ ∑ % % % % %  (6.4) 

 

Step II.  2| , , *, , , 1, ...,i i y i i i Mηη η β σ′⎡ ⎤′ ≠ =⎣ ⎦  

 

Since the posterior [ηi|⋅] is proportional to the product of the likelihood and the prior, we have 

[ ] 2 1 2 2
( ) ( )1

1log | . .
2

M
i i i ii

const Vη η β β β ηη ϕ ν ϕ ϕ η σ−
=

⎡ ⎤′⋅ = − + +⎢ ⎥⎣ ⎦∑ %% %  (6.5) 

As in Step I, the kernel on the right hand side of (6.5) involves first and second powers of ηi, and one can 

complete the square in ηi.  Therefore, [ηi|⋅] is also exact Gaussian with mean and variance given by the mode 

and curvature.  That is, 

[ ] ( )
2

i ,mode ( )ˆ| ,i iN ψ ηη η σ −⎡ ⎤⋅ = ⎣ ⎦   (6.6) 

where 

( ) [ ]
,mode ( )

1 2
( ) ( ) ( ) ( )

ˆ  solves 0,

log | .

i i

i i i i i i i w iw x V

η

η η η η β β η

η ψ

ψ η ϕ ν ϕ η σ−
+ +

=

′= ∂ ∂ ⋅ = + −%% %
 (6.7) 

where i w i w i ix x a w+ + += −% . Again as in the case of β, ,modeˆiη  has a closed form.  The variance ( )
2

( )iψ ησ  is 

obtained as 

( ) ( )( )2 2 1 2
( ) ( ) ( )( ) i i i i i w i wi E w V x V xη η η β ηψ ησ ψ σ− −

+ + +′= − ∂ ∂ = + +%% %  (6.8) 

 

It is interesting to note that ( )iηψ  and ( )
2

( )iψ ησ  coincide with the usual BLUP theory when the design is 

ignorable and wij = w (a constant).  To see this, note that under the ignorality assumption, 
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( )2 2 2 2 2 2
( ) ( ) ,i i i ij ij ij ij ij ij ij ij iji j j j j j

a C V Cov x e w e w w x w wβη η ε ε εσ σ σ= = =∑ ∑ ∑ ∑ ∑ ∑ , (6.9) 

where ij ij ij ie y x β η′= − − .  Thus, assuming wij = w, we have i ij ij
a x n=∑  and 0i w i ix a w+ +− = .  Also, 

2 2 2 2 2
( )i i i ij ij

w w w nη ε εν σ σ+ += =∑   (6.10) 

 

The reduced forms of ( )iηψ  and ( )
2

( )iψ ησ  are 2 2
( )i ij ij

eη ε ηψ σ η σ= −∑ , and 

( )

2 2
2 2 2

( ) 2 21 i
ii

i

n
n

n
η ε

ε ηψ η
η ε

σ σ
σ σ σ

σ σ

+
= + =   (6.11) 

which implies that 

( )
( )

1 2

,BLUP 2 2 2 2 2
1ˆ

ij ijji
i ij y ij

i

y xn
y x n

n
η

ε η ε η ε

β σ
η β

σ σ σ σ σ

− ′−⎛ ⎞
′⎜ ⎟= + = −

⎜ ⎟ +⎝ ⎠

∑
∑  (6.12a) 

 

and 

( ) ( ) ( )
2 2

2 22
,EFGL ,BLUP( ) 2 2

ˆ ˆi
i i i ii

i

n
E E

n
η ε

ψ η
η ε

σ σ
η η σ η η

σ σ
−− = = = −

+
 (6.12b) 

 

Step III.  2 |ησ η⎡ ⎤
⎣ ⎦  

 

In view of the conjugate nature of the prior, the conditional posterior also has the inverse Gamma distribution, 

and is given by 

( ) ( )0

2 2 2
0| 2, 2

M
ii

IG Mη ησ η ν σ η⎡ ⎤⎡ ⎤ = + +⎢ ⎥⎣ ⎦ ⎣ ⎦∑   (6.13) 

which implies that the conditional posterior mean of 2
ησ , 

( ) ( )( ) ( )
0

2 2 2
0 0| 2 2iE M M Mη ησ η η ν σ νΣ⎡ ⎤ = + − + −⎣ ⎦   (6.14) 

It follows that the unconditional posterior mean of 2
ησ , i.e. 2 |E yησ⎡ ⎤

⎣ ⎦%  is obtained by the average of MCMC 

realizations after convergence.  This posterior mean is known to be approximately equal to the REML 

estimator for large M, see Kass and Steffey (1986), and Singh, Stukel, and Pfeffermann (1996). 

 

Next,  if 2
εσ  also needs to be estimated, then logL gets modified due to inclusion of the EF 2 ( )σ εϕ .  It is easily 
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seen that in Step III, [ ]|iη ⋅  can be obtained using the Metropolis-Hastings (MH)-step with a proposal 

distribution given by the earlier closed form of [ ]|iη ⋅  where 2
εσ  is not part of the likelihood. 

 

Now, for estimating 2
εσ , we add a fourth step. 

 

Step IV. 2 |εσ⎡ ⎤⋅⎣ ⎦  

 

It is similar to [ ]|β ⋅  because 2
εσ  is treated like a mean parameter via EF.  So, 

( ) { }2 2
2 2 2

, mode ( ) 0
ˆ| ,Const N V w I

ε
ε ε σ ε σ

σ σ ++ >
⎡ ⎤⋅ = ×⎣ ⎦                         (6.15) 

where ( )22
, modeˆ iM n

ij ij i iji j
y x w wεσ β η ++′= − −∑ ∑ , and iji j

w w++ =∑ ∑  is typically constant in practice due 

to weight calibration. 

 

Before moving to the next section, we remark that in the HB framework, to get a reasonable shrinkage of the 

prior estimates of ηi toward the direct estimates, we need most of the ηi’s manifested in the sample.  If the 

sampling design is such that this is not the case (e.g., if ηi’s correspond to random PSU effect), then we are 

faced with an undesirable scenario in which there is hardly any shrinkage of prior estimates of ηi’s.  It is 

interesting to note an analogy of the above situation with the model-based estimation in survey sampling 

under the prediction approach, where the model-based predictor of the unobserved part of the population is 

simply given by the synthetic estimator. 

 

7. SIMULATION EXPERIMENT 

 

We design our study along the lines of Pfeffermann et al. (1998). Consider a universe of 1, ,i ML= strata 

(small areas) where 100M =  and let iN  denote the number of population members in stratum- i . In this 

simulation experiment, we set *
0 (1 exp( ))i iN N u= +  where 0N  is a constant and *

iu  is obtained by truncating 

~ (0, 0.2)iu N  at 0.2± . For simplicity, we consider a single covariate super-population linear mixed 

model 0 1ij ij i ijy xβ β η ε= + + +  where 0 0.5β = , 1 1β = , ~ (0, 0.2)i Nη , ~ (0, 4)ij Nε , and 1, , ij NL= . The 

covariate ij i ijx υ δ= +  where ~ (0, 0.1)i Nυ  and ~ (0, 1)ij Nδ .  We generate 150K = population level data sets 

with common ijx  and iN  where iN ’s are generated using 0N =3000. Note that the substratum sizes vary over 
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the 150 populations. We selected two samples from each of these populations. The first sample was selected 

in such a way that the design was ignorable. The second sample was selected so that the design was 

nonignorable.  

 

To select a sample with an ignorable design, we further stratify the stratum- i  population into two substrata 

iΩ +  with 0ijx > and iΩ −  with 0ijx ≤  . To select a sample with nonignorable design, we  stratify the stratum- i  

population into two substrata iΩ +  with 0ijε > and iΩ −  with 0ijε ≤ . Let iN + , iN −  denote the sizes of these 

substrata and in + , in − denote the sizes of the simple random samples selected without replacement from these 

strata, respectively. Note that the substratum sizes vary across populations. Let 
100

1
i

i

N N
=

= ∑ and 

100

1
i

i

n n
=

= ∑ where i i in n n− += + . For 150 populations, we generate the corresponding 150 samples. In our 

simulation experiment, 628897N = , 60 and 20i in n− += = so that we have  a sample of size 80 for each small 

area with a total sample of size 8000. 

 

In our simulation study, we compare EFGL, FH, unweighted HB, and PHB (Pseudo-hierarachical Bayes 

method of You and Rao, 2003) solutions by comparing average posterior means and standard deviations of 

the parameters of interest. We also compare average 95% prediction interval coverage probabilities as well as 

the average lengths of 95% prediction intervals. These averages are taken over 150 replications corresponding 

to populations with varying iη 's. The comparisons are made for samples generated under ignorable and 

nonignorable designs. For the FH method, we used a HB-version obtained from EFGL by transforming the 

unit-level auxiliary information to the aggregate-level, i.e., replacing ijx  with 
1

( )
iN

i ij i
j

X x N
=

= ÷∑ . For the PHB 

method, we used version 2 of You and Rao (2003). 

 

For each sample ( 1, ,150s L= ), using Gibbs sampling technique, we generate 10,000 MCMC samples for 

each of the model parameters, namely 2
0 1 1 M, , , ,  and  ηβ β η η σK . These MCMC samples are tested for 

convergence criterion using CODA (Convergence Output Data Analysis software). First 1000 MCMC 

samples are deleted for “burn-in” period and from the rest of the 9000 MCMC samples we selected every 

ninth sample to minimize any auto-correlation among samples, yielding a final MCMC sample of size 1000.  

 

Let 2
0 1( , , , )sc sc sc isc scηθ β β η σ= denote the parameter values from the c -th MCMC cycle corresponding to the s -
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th sample. In Table 1, the average posterior mean of θ  is defined as 
150 1000

1 1

( ) (1000 150)sc
s c

θ
= =

÷ ×∑∑  and the average 

posterior standard deviation of each element of  scθ  is defined as the square root of 

150 1000
2

1 1

( ( ) ) (1000 150)sc s
s c

θ θ
= =

− ÷ ×∑∑  where
1000

1

( ) 1000s sc
c

θ θ
=

= ÷∑ . Let 0 1isc sc i sc iscXβ β ηΘ = + +  denotes the small area 

estimate from the s -th sample for the i -th area using the c -th MCMC cycle where
1

( )
iN

i ij i
j

X x N
=

= ÷∑ . Also, 

define *
0 1is i isXβ β ηΘ = + +  where isη  is the true value of iη  for the s -th population. Let isL  and isU  denote 

2.5 and 97.5 percentiles of the posterior distribution of isΘ obtained from 1000 MCMC samples of iscΘ . 

Define 
*1 if [ , ]

   
0 .

is is is
is

L U
otherwise

ψ
Θ⎧ ∈⎪= ⎨

⎪⎩
 

The coverage probability distribution characteristics given in Tables 2 are obtained from the distribution of 

100 area- i specific values of 
150

1

( ) 150is
s

ψ
=

÷∑ .  

 

8. SIMULATION RESULTS 

 

Tables 1 and 2 summarize the simulation results obtained from the ignorable sample design, whereas Tables 3 

and 4 present the corresponding results for the nonignorable samples.   In Table 1, average posterior means 

and standard deviations for the EFGL method are compared with solutions from a HB version of the FH 

model, PHB and unweighted solutions for the ignorable sample design.  Since the model holds in the sample, 

the unweighted solution is expected to be the most efficient solution. The average posterior means for all four 

methods are very close to each other. The average posterior standard deviation of 1β  for the FH model is 

approximately 13 times larger than the other methods. This is due to the fact that the FH solution uses 

aggregate-level covariate information. However, the average posterior standard deviations of 0β  and 2
ησ    for 

all the solutions are very close to each other. 

  

In Table 2, 95% prediction interval coverage probabilities for the EFGL solution are compared with the FH, 

PHB, and unweighted HB solutions coverage probabilities. The coverage probabilities for all solutions are 

very close. However, the prediction intervals for the FH solution are 16% wider than the EFGL solution, 

which is expected, since the EFGL solution utilizes unit-level covariate information whereas the FH solution 

uses aggregate-level covariate information.  The unweighted HB method, being the most efficient for the 



 63

ignorable sample design, results in prediction intervals that are approximately 10% shorter than the EFGL 

solution.  

 

For the nonignorable sample design, Table 3, shows that the average posterior mean for 0β  from the 

unweighted solution is heavily biased (0.1043 vs 0.5) due to the fact that we over- sample the iΩ −    substrata. 

On the other hand, the average posterior means for the FH, EFGL and PHB solutions are very close to each 

other. The average posterior standard deviations of 0β  and 2
ησ   for all four solutions are also close to each 

other whereas the average posterior standard deviation for 1β  from the EFGL, PHB and unweighted solutions 

are more than 12 times smaller than the solution from the FH model.  

 

From Table 4 (for the nonignorable sample design), we see that 95% coverage probabilities for the EFGL 

solution and FH solution are very close to each other whereas the coverage probabilities for the PHB solution 

are approaching 1 and the coverage probabilities for unweighted solution are close to 0. The unweighted 

method performed very poorly due to the heavily biased estimate of 0β .  It suggests that for our nonignorable 

samples, the PHB solution substantially overestimates the SAE posterior variances. The prediction intervals 

for the FH, PHB, and unweighted solutions are respectively 86%, 52%, and 32% wider than the EFGL 

solution. The inefficiency in the FH solution is expected for the reasons mentioned earlier, since the EFGL 

solution utilizes unit-level covariate information whereas the FH solution uses aggregate-level covariate 

information.   

 

 

9.  MIXED NONLINEAR MODELS:  LOGISTIC CASE 

 

The method of EFGL introduced in Section 5 for finding HB-SAE in the context of mixed linear models can 

be easily applied to mixed nonlinear models, the only difference being that full conditional posteriors of β and 

η have no longer analytic solutions.  Therefore, as expected, the method gets more computer intensive.  To 

illustrate the ideas, we consider a simpler version of the mixed logistic model (1.1) given by: 

( )
( ) ( ) ( )0

2 2 2
0

, ~ Bernoulli

log

~ 0, , ~ , ~ 2, 2 .

ij ij ij ij

ij ij i

p
i iid

y y

it x

N U R IGη η η

µ ε

µ β η

η σ β σ ν σ

= +

′= +  (7.1) 
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The EFs in this case remain similar to the linear case except that the elementary zero functions (or the 

residuals) ij ijy µ− , are complex due to the nonlinear form of µij’s.  Observe that EFs continue to be simple 

linear functions of elementary zero functions, and hence they behave well in terms of Gaussian 

approximations.  The EFs for the logistic case under Scenario I are given by 

 

( ) ( )
( ) ( )

( ) ( )1
~ 0,

~ 0,

in
i ij ij ij approx ij

ij ij ij ij approxi j

y w N V

x y w N V

η η

β β

ϕ µ

ϕ µ

=
= −

= −

∑
∑ ∑

  (7.2) 

 

We can orthogonalize βϕ  with respect to ϕη(i)’s as before.  Also with the intercept model, βϕ  corresponding 

to the intercept should be dropped because of its linear dependence on ϕη(i)’s.  Now, the likelihood, 

( )* | ,L y β η  can be approximately specified as before, but the MCMC steps are modified as follows: 

 

Step I.  [ ]| *,yβ η  

 

Since the sample is typically very large, the full conditional posterior  can be well approximated by 

[ ] ( )1
mode ( )

ˆ| *, ~ ,y N ψ ββ η β Σ−   (7.3) 

where modeβ̂  solves ( )( )( )0, Eβ ψ β βψ β ψΣ= = − ∂ ∂ , 

( ) ( )

( ) ( )( ) 1
( ) ( )1 1

log * | ,

1 1 (1 )iM n
i ij ij ij ij i ij ij ij ij ij i i i ij iji j i j i

L y

x w V x x w a x w V

β

η η β β

ψ β β η

ϕ µ µ µ µ µ µ ϕ−
= =

= ∂ ∂

′= − − − − −∑ ∑ ∑ ∑ ∑ % %
  (7.4) 

Note that unlike the linear case, modeβ̂  does not have an analytic form.  Also note that instead of the 

approximate posterior (7.3), one can get realizations from an exact posterior by using the MH step within 

MCMC in which (7.3) can be used as a proposal. 

 

Step II.  2| , , *, , 1, ..., .i i y i Mηη η β σ′⎡ ⎤ =⎣ ⎦  

As mentioned earlier, this again does not have an analytic solution.  We could use MH with mle/prior for the 

proposed distribution.  In other words, solve 2
( ) 0i iη ηψ σ η−− =  to get ,mle-adjˆiη , where 

( ) ( )( ) log * | ,i i L yηψ η β η= ∂ ∂ , and use ( )( ) 12 2
,mle-adj ( )ˆ ,i iN ηψ ηη σ σ

−−⎛ ⎞+⎜ ⎟
⎝ ⎠

 as the proposal distribution where 
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( )
2

( )( ) i ii E ηψ ησ ψ η⎡ ⎤= − ∂ ∂⎣ ⎦ . 

 

Step III.  2 |ησ η⎡ ⎤
⎣ ⎦  

 

We get the same result as in the linear case.  Note that Step IV for 2 |εσ⎡ ⎤⋅⎣ ⎦  is not needed because 2
εσ  is a 

known function of µij in the logistic case. 

 

We now consider the work of Folsom et al. (1999) mentioned earlier in Sections 1 and 2 which is related to 

the proposed EFGL method.  For the logistic model, they constructed a pseudo log-likelihood ( from the 

Bernoulli likelihood at the census-level) involving design weights.  For this purpose, survey weights were 

scaled such that they sum to the effective sample size obtained by using the design effect within each area i. 

The design effect was, however, based only on the effect of unequal weighting under the working assumption 

of ignorability of the design. In other words, effects of stratification, clustering, and multistage designs were 

ignored. 

 

Under their pseudo-likelihood approach, the score function for ηi involves ϕη(i) multiplied by a scale 

adjustment for weights.  This pseudo score function in conjunction with the prior information gives the 

appropriate prior-adjusted pseudo-mle for random effects.  This prior-adjusted pseodo-mle along with its 

variance can be used for defining a Gaussian proposal distribution for the MH step in finding the full 

conditional posterior of iη . In the case of β , the actual pseudo score function obtained from the pseudo 

likelihood was, however,  not used, but a somewhat modified  pseudo score function, namely βφ obtained 

from the census likelihood was used as it has the appealing property of self-calibration or benchmarking 

explained later on.  Note that the actual pseudo score function for β  is not proportional to βφ   because of 

weight scaling.  However, pseudo mleβ̂  obtained by solving 0βϕ = , and the associated  sandwich V-C matrix 

( ) ( ) 11
β φ βϕ β ϕ βΣ

−− ′′∂ ∂ ∂ ∂  used respectively as the mode and curvature of a Gaussian distribution is likely 

to be close to the conditional posterior based on the actual pseudo-score function for β.  Here the V-C matrix 

Σϕ is computed under the working assumption of ignorable designs, and thus reflects only unequal weighting 

effect.  It may be noted that use of the sandwich V-C (and not the pseudo information ) matrix is appropriate 

because the likelihood is pseudo. 
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For computing, 2[ | ]ησ ⋅ , the distribution of Step III of EFGL was used.  Thus, the above pseudo-likelihood 

approach has some similarity with the proposed EFGL.  The main differences are that the likelihood is pseudo 

which need not be valid, and the working assumption of ignorable sample design may not be reasonable.  In 

EFGL, the likelihood is based on EFs and approximated by a valid Gaussian likelihood where the covariance 

matrix takes full account of the design. However, in the NHSDA application, it was observed that the MCMC 

method for the pseudo-likelihood approach did converge and  provided good results.  Also, it can be shown 

that HB-SAE estimates based on the pseudo-likelihood approach have the desirable property of approximate 

self-calibration or benchmarking because SAEs obtained directly from pseudo score functions are very similar 

for large samples to the direct SAEs which  are,of course, design-consistent.  Thus, SAEs for big states will be 

approximately equivalent to the direct estimates.  Also, aggregates of SAE estimates are nearly calibrated to 

the national direct estimates.  By contrast, estimates resulting from the method of  EFGL, although design-

consistent,  need to be modified to achieve benchmarking to direct estimates for areas with very large 

samples, see e.g., Singh and Folsom (2001). 

 

10. CONCLUDING REMARKS 

 

The method of EFGL was developed to exploit unit-level information, to take full account of the survey 

design, and  to have a valid (approximate) likelihood for the HB-SAE methodology for generalized linear 

mixed models.  It generalizes the aggregate-level model of FH (1979), and the pseudo-likelihood approach of 

Folsom et al. (1999).  There are essentially two main ideas in EFGL, namely, the data aggregation  via EFs 

and EF-collapsing.  The main reason for EF-collapsing is to improve Gaussian approximation, and the 

secondary purpose is to improve the variance estimate’s precision.  In practice, it may be preferable to use 

separate modeling to make variance estimates more stable. However, even if variance estimates are not 

precise, it is often of interest, in practice, to see how much variance reduction can be realized through SAE 

modeling. 

 

The idea of data aggregation in EFGL is somewhat similar to that of FH except it  tries to take advantage of 

the unit-level information as much as possible.  Since EFGL uses more information than FH, the resulting 

estimates are expected to be more efficient than those from FH.  In particular, for the case of simple linear 

mixed models (2.1) with known variance components, it can be easily shown analytically that  precision of 

the estimates of fixed effects ( β ) can be improved substantially in the case of unit-level models if the 

covariates ( ijx ) have sufficient variability within areas.  There is also some gain in efficiency of random effect 
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( iη ’s) estimates.  However, if iη ’s are also defined as coefficients of suitable covariates ( ijz ’s) as in the case 

of random regression coefficients, then high efficiency gains in estimating random effects can also be realized 

if there is sufficient variability in ijz ’s within areas. 

 

We remark that the problem of HB-SAE arose in the context of NHSDA-SAE application where it was 

desired to fit a mixed logistic linear model.  This was a daunting SAE application task with a very large data 

set and many covariates which was addressed by Folsom et al. (1999).  Note that it was not possible to use 

any existing software  for this task . 

 

The ideas underlying the proposed method of EFGL are quite general, and the method is applicable to general 

nonlinear mixed models for survey data.  However, it does have some limitations which the user should keep 

in mind: (i) Some loss of efficiency is inevitable due to data aggregation, and EF-collapsing.  This is the price 

we pay for not having enough information about the likelihood of the sampled data, and by not being able to 

ignore the sample design. (ii)  The EF-collapsing may be needed for the Gaussian approximation.  In practice, 

it is better to avoid it if possible as it doesn’t distinguish much between the areas involved in collapsing.  At 

the design stage, one can take measures to ensure a sufficient number of observation in each small area in 

order to avoid EF-collapsing.  It may be noted that one only needs a modest size of the realized sample in 

small areas for Gaussian approximation of EFs.  However, SAEs are still needed for precise estimation. 

 

Finally we mention an interesting problem (not on SAE though) considered by Pfeffermann et al. (1998) on 

multi-level modeling (such as the mixed linear model (2.1)) for survey data for estimating fixed effects ( β ) 

and variance components ( 2 2,η εσ σ ).  Here  we don’t have the problem of small area estimation, and the 

random effects iη are defined at the PSU-level which is lower than the area level.  Under a frequentist 

approach, they proposed a probability-weighted iterative GLS for estimating all the fixed parameters which 

requires knowledge of both first-stage ( iπ ) and second stage ( j iπ ) selection probabilities separately, and a 

large  number of PSUs as well as a large number of second stage units within each PSU to ensure consistency 

of the variance component estimates.  In practice, since it is not realistic to assume large second stage sample 

sizes, the authors proposed scaling the weights as an option to reduce small sample bias.  For a Bayesian 

approach as an alternative, if second order inclusion probabilities were known, it would be fairly 

straightforward to construct EFs for  2 2, ,η εβ σ σ , and then the method of EFGL could be used to produce HB-

SAE  for these parameters.  However, if only first order inclusion probabilities are known, as is often the case, 
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we need to modify the EFGL method.  In its present form it doesn’t seem applicable, because most PSUs need 

to be manifested in order to have a reasonable shrinkage as mentioned earlier in Section 6. A way to modify 

EFGL would be to include an additional EF of the form ( 2 2
1 1

/1i s i i i
M M

i i
πη η∈= =

−∑ ∑ ) to account for the first 

stage of selection of PSU-level random effects in estimating 2
ησ , and to allow for collapsing of PSUs, if 

necessary, for Gaussian approximation of EFs. Note that under the usual with-replacement assumption of 

PSUs, design-based variances of PSU-level EFs can be estimated within each design stratum provided there 

are at least two PSUs per stratum. 
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Table 1: Average Posterior Mean and Standard Deviation for Model Parameters: Ignorable Sample 
Design  
 

Average Posterior Mean Average Posterior 
Standard Deviation Parameter 

(True 
Value) FH 

 
EFGL 

 
PHB Unweighted FH 

 
EFGL 

 
PHB Unweighted 

0β  (0.5) 0.5009 0.5020 0.5020 0.5024 0.0473 0.0461 0.0482 0.0461 
1β  (1.0) 0.9946 0.9988 0.9989 0.9983 0.1650 0.0129 0.0131 0.0121 
2
ησ (0.2) 0.1970 0.1974 0.1981 0.1981 0.0318 0.0309 0.0303 0.0303 
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Table 2:  95% Coverage Probability and Ratio of Prediction Interval (PI) Widths: Ignorable 
Sample Design 
 

Coverage Probability Ratio of Average PI Widths Percentiles 
and Means 
over Small 

Areas 
FH EFGL PHB Unweighted FH/EFGL PHB/EFGL Unweighted/EFGL

95% 0.973 0.970 0.973 0.980 1.19 1.03 1.00 
75% 0.953 0.953 0.960 0.967 1.17 1.02 0.97 
50% 0.940 0.940 0.953 0.953 1.16 1.01 0.91 
Mean 0.942 0.941 0.950 0.950 1.16 1.01 0.89 
25% 0.930 0.933 0.940 0.937 1.15 1.00 0.83 
5% 0.913 0.907 0.913 0.920 1.14 1.00 0.75 

 
 
Table 3: Average Posterior Mean and Standard Deviation for Model Parameters: Nonignorable 
Sample Design 

 

 
 

Table 4:  95% Coverage Probability and Ratio of Prediction Interval (PI) Widths: Nonignorable 
Sample Design 
 

Coverage Probability Ratio of Average PI Widths Percentiles 
and Means 
over Small 

Areas 
FH EFGL PHB Unweighted FH/EFGL PHB/EFGL Unweighted/EFGL

95% 0.973 0.970 1.000 0.007 1.91 1.54 1.35 
75% 0.953 0.953 1.000 0.000 1.88 1.53 1.33 
50% 0.940 0.933 0.993 0.000 1.86 1.52 1.32 
Mean 0.941 0.933 0.995 0.001 1.86 1.52 1.32 
25% 0.927 0.913 0.993 0.000 1.84 1.50 1.31 
5% 0.910 0.897 0.987 0.000 1.82 1.49 1.30 

 

Average Posterior Mean Average Posterior                      
Standard Deviation Parameter 

(True 
Value) FH 

 
EFGL 

 
PHB Unweighted FH 

 
EFGL 

 
PHB Unweighted 

0β (0.5) 0.5043 0.5029 0.5029 0.1043 0.0472 0.0450 0.045
9 0.0448 

1β (1.0) 1.0014 1.0004 1.0006 0.9999 0.1638 0.0131 0.012
1 0.0103 

2
ησ (0.2) 0.1972 0.1977 0.1909 0.1909 0.0319 0.0294 0.029

0 0.0290 
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Introduction 
 

In their intriguing paper, Singh, Folsom, and Vaish develop an Estimating-Function Hierarchical 
Bayesian (EFHB) methodology to replace the standard Fay-Herriot (F-H) model for small-domain 
estimation.  I will discuss two limitations of the F-H model overcome by their EFHB methodology 
and two other problems that are not.  This leads to the obvious question:  Why combine estimating 
functions and hierarchical Bayesian models in the way the authors choose? 
 

The Fay-Herriot Model 
 
Suppose we have M small domain totals (or means) satisfying the model:  
 
Yi+  =  Xi+β +  ηi ,       ηi ~ N(0, ση2). 
 
Suppose further that each of the component of the row vector Xi+ is known, but each of the Yi+ has a 
randomization-based estimator: 
 
 yi+(RB) = Yi+ + di ,       di   ~   N(0, Vi) approximately. 
                                        
A better estimator for Yi+ is  
 
yi+(λ)    = (1 ! λ)yi+    +  λ Xi+ b,  
 
where b is an unbiased estimator for β, λ = vi /(vi + sη2) when M is large, vi is a randomization-based 
estimator for Vi , and sη2 is an estimator for ση2.  A nice property of yi+(λ) is that as the sample size 
within domain i increases, so that Vi (and vi) tends towards 0 under mild conditions,  yi+(λ) 
approaches yi+(RB).  Consequently, if yi+(RB) is randomization consistent (approaches Yi+ as the 
sample size within i grows arbitrarily large), then so is yi+(λ). 
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The Estimating-Function Hierarchical Bayesian Methodology 
 
Let j be a unit within area i.  The authors’ EFHB technology lets us expand the F-H area-level model 
to the unit-level: 
 
yij = xijβ + ηi + εij,   where    E(εij) = 0.   
 
The model holds for the population, but not necessarily for the sample.  In other words, the design 
may be informative.   In this, the authors part company from most of the small-domain literature. 
 
If Xi+ = 3j0U(i) xij   is known, and xij is not constant within each area, then the EFHB technology 
produces a better estimator than yi+(λ;F-H) under the model.   Moreover, as Vi (and vi) approaches 0, 
yi+(HB) approaches Yi+ 
 
In addition, the EFHB technology allows models of the form: 
 
yij = µ(Xiβ + ηi) + εij , 
 
where µ( . ) need not be the identity.  This is particularly helpful when yij is a 0/1 variable.  In that 
situation,  µ( . )  can be logistic.  Unfortunately, there is a limited ability to replace Xi+ with xij  
 
The EFHB methodology uses randomization-based estimators for Vi, but such estimators are 
notoriously error-prone when based on small samples.  Collapsing domains won’t help when the 
estimator, vi, is zero but Vi is positive. 
 
Another problem with the authors’ EFHB methodology is that it is not self-benchmarking.  A 
methodology having this property produces domain estimators satisfying 
 
   M 
   3   yi+   =  3 yi+(RB) = y++(RB) , 
  i=1 
 
where y++(RB) is model free yet has a small variance.  It should be noted that the standard F-H 
approach is likewise not self-benchmarking.  
 

Why Estimating Functions? 
 
Arguably the first model-assisted  paper (Godambe 1955) requires the estimator to be randomization 
unbiased.  The probability-weighted ratio (and regression) estimator can have good model-based 
properties but has a potential randomization bias.  The correct way, in my view, to deal with the 
randomization bias of the certain probability-weighted estimators is to change the requirement from 
randomization unbiasedness to randomization consistency  (Isaki and Fuller 1982), which assures 
that the estimator in question be close to what it estimates almost surely when the sample is large 
enough.  The wrong way is to observe that an  estimator like the probability-weighted ratio can be 
derived from the solution to an unbiased  estimating equation (e.g., Godambe 1960, Godambe & 
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Thompson, 1986).  This “wrong way” uncovered a technique that has found many practical uses, 
however.   It is a useful technique built on a dubious theory.   
 
Singh, Folsom, and Vaish use estimating functions (a mild generalization of estimating equations) to 
generate estimators that are randomization-consistent, but not self-benchmarking.  With an 
alternative approach, You and Rao (2003) use estimating functions to produce estimators that are 
both randomization-consistent and self-benchmarking. They do this by modeling the sampling 
variance under an ignorable model.  Unfortunately, they assume a linear µ( . ).  
 

My Bottom Line   
 
The less data we have the more we need models.   Models with pre-determined functional forms 
have more power than semi-parametric models.  Furthermore, hierarchical Bayesian models allow µ( 
. ) to be nonlinear.  
 
Combining estimating functions Bayesian models appear to give us the best of both worlds, the 
robustness of estimating functions and the power of Bayes.  The former’s reliance on the   
asymptotic normality of probability-weighted estimators, however, undercuts the advantage of a 
latter. We also need to ask whether sampling weights are needed because:  
 
1. The model is correct in the population but not necessarily correct in the sample OR 
2. The model may be wrong in both the sample and the population.  
 
By positing the first, which is what the authors do, Emodel ([yi+(RB) !Yi]2 | sample) cannot be estimated 
directly.  Instead, one invokes the equality,  
 
Emodel {Erand ([yi+(RB) !Yi]2)} = Erand {Emodel ([yi+(RB) !Yi]2 | sample)},  
 
and estimates the randomization variance for domain i, Vi = Erand ([yi+(RB) !Yi]2).  This is often not a 
trivial thing to do well even with largish samples.  In my view, it is much more sensible to accept the 
second position.  Using sampling weights provides some asymptotic protection against the model 
being wrong in the population itself.  Nevertheless, model-based parameters and predictors should 
be estimated as if the model were correct and the design noninformative.  One can then estimate 
Emodel ([yi+(RB) !Yi]2 | sample) = Emodel ([yi+(RB) !Yi]2) with relative ease, and the resulting estimator 
will usually have much more power than a randomization-based estimator for Vi.  This is the 
approach effectively taken by You and Rao.    
 
Singh, Folsom, and Vaish’s EFHB approach allows them to incorporate a nonlinear µ( . ) into 
their model.  I wonder if that is enough to justify their having to rely on estimated randomization 
variances and put up with the inconvenience of domain estimators that are not self-
benchmarking. 


